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Clusters and Ising critical droplets: a renormalisation group 
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Center for Polymer Studies$ and Physics Department, Boston University, Boston, MA 
02215, USA 

Received 13 November 1979 

Abstract. The Migdal-Kadanoff renormalisation group for two dimensions is employed to 
obtain the global phase diagram for th? site-bond correlated percolation problem. It is 
found that the Ising critical point ( K  = K,, H = 0) is a percolation point for a range of bond 
probability p B  such that 1 a p B  3 1 -e-’%. In particular, as pB approaches 1 -e-ZKc, 
the percolation clusters become less compact and coincide with the Ising critical droplets. 

Much attention (Domb 1974, Binder 1976, Stoll et a1 1972) has been paid to the study 
of clusters made of nearest-neighbour occupied sites in the lattice gas or Ising model, 
because of possible connections between the behaviour of such clusters and the 
thermodynamic properties such as phase transitions, nucleation, etc. For a long time it 
has been widely believed that these clusters, which we will call Ising clusters, have the 
same properties as the droplets studied in the droplet model (Fisher 1967)-namely 
that (i) they diverge at the Ising critical point; (ii) their linear dimension, which we 
identify with the connectedness length, diverges as the king correlation length; and (iii) 
the mean cluster size S (i.e. the second moment of the cluster size distribution) diverges 
as the susceptibility. 

It has been proven rigorously, in fact, that in two dimensions such clusters diverge at 
the’Ising critical point (Coniglio eta1 1977) H = 0, T = T,. However, series expansions 
(Sykes and Gaunt 1976) have shown that the mean cluster size S diverges as (T  - Tc)-’p 
with yp = 1.91 f 0.01, which is definitely larger than the susceptibility exponent in the 
king model, y = 1.75. Moreover, in three dimensions Monte Carlo studies and series 
expansions (Sykes and Gaunt 1976) show that these clusters in the low-density phase 
diverge at a temperature T < T,. At this stage it is by no means clear what role such 
clusters play in the study of critical properties of the Ising model. The first question to 
answer (stated clearly by Binder (1976)) is how to define, in a precise way, a cluster 
which has the properties (i), (ii) and (iii) of a critical droplet. One would like to define a 
cluster which carries all the critical information contained in the Ising pair correlation 
function. The known properties of the Ising clusters suggest that these clusters are too 
big to describe critical droplets. The reason is that there are two contributions to the 
Ising clusters: one is due to the correlations, and the other is due to purely geometric 
effects. The last contribution becomes evident in the limit of infinite temperature and 
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zero magnetic field. In this case there are no correlations, although the cluster size is 
different from zero. This is due to the fact that the density of occupied sites is 1, and 
these join together to become clusters for purely geometrical reasons. Starting from the 
Ising clusters, we seek to define a smaller cluster in which the geometrical effect has 
been eliminated. 

For any given configuration of the lattice gas we consider first the king clusters made 
of nearest-neighbour occupied sites. Then we introduce a bond with probability pB 
between any nearest-neighbour pair in the Ising cluster (figure 1). These new clusters 

Figure 1. Occupied sites are denoted by dots, and bonds by wavy lines. The configuration in 
this figure contains two two-site clusters and three one-site clusters. 

are made of occupied sites connected by bonds (Coniglio eta1 1979). The original Ising 
cluster will either reduce its size or will break into smaller clusters. We will show that 
there will be a particular value of pB for which these new clusters behave like critical 
droplets and obey properties (i), (ii) and (iii). If pB = 1, we obtain the Ising clusters 
again. This case (pB = 1) is known as the site correlated percolation problem because 
one looks at the properties of the king clusters just as in the random percolation 
problem (Essam 1973, Stauffer 1979). The main difference is that in random percola- 
tion the occupied sites are randomly distributed, while in this case they are correlated 
according to the lattice gas Hamiltonian. In the infinite-temperature limit one recovers 
random percolation. The case pB # 1 is called site-bond correlated percolation (Coni- 
glio et a1 1979). Another important reason for studying site-bond correlated percola- 
tion is that it has been proposed as a model for the sol-gel transition where the gelation 
transition occurs near the consolute point. This model has already been solved 
(Coniglio et a1 1979) for the Cayley tree, and the phase diagram is in fair agreement with 
the experimental data of Tanaka et a1 (1979). 

A Hamiltonian formalism has been proposed to study site correlated percolation 
(Murata 1979). We can generalise this formalism to study site-bond correlated 
percolation. The Hamiltonian that we consider is the S-state dilute Potts model which 
is given by 
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is the lattice gas Hamiltonian, where n = 0, 1, P = l /keT,  K is the nearest-neighbour 
coupling constant, related to the Ising coupling 2 by 2 = 4K, and A is the chemical 
potential, related to the Ising magnetic field H and the coordination number c by 
H = 1 (A - bcK). The sum is over nearest neighbours, and 

-PHDP=J - 1)ninj + h C (&,I - l)ni, (3) 
(ii) i 

where U, is the s-state Potts variable. Following the procedure of Murata, we can show 
that the function G that plays the role of the free energy in the site-bond correlated 
percolation problem is given by 

G(K, h, H,J)=dF/dsI,=i, 

where 
1 -PF = lim -1n Tr e-PH . 

N -  N 

The first and second derivatives of G with respect to h are related respectively to the 
percolation probability P (probability that an occupied site belongs to an infinite 
cluster) and the mean cluster size S. 

The clusters are made of sites distributed with the lattice gas Hamiltonian (2) 
connected by bonds with probability pB = 1 - e-J. 

Thele is an important property of (1) which allows us to describe the droplet in terms 
of geometric clusters. Namely, for J = K/2 and H = 0 equation (1) is equivalent to an 
(s + 1)-state Potts model, i.e. 

where b is an (s + 1)-state Potts variable. In the limit s + 1 equation (4) becomes 
equivalent to the lattice gas (equation (2)); consequently F becomes the lattice gas free 
energy, and G will have a singularity at the Ising critical point K = K,, H = 0. This 
suggests that the Ising critical point K = K,, H = 0 is a percolation point if we choose 

( 5 )  pB = 1 - 

This argument is valid for any dimension. For d > 2 and pB = 1 we know (Coniglio et a1 
1977, Muller-Krumbhaar 1974) that for H=O an infinite cluster of ‘down’ spins 
appears at a temperature T below the Ising critical temperature Tc. 

The above simple argument shows that, if we instead choose PB as given by equation 
(9, these new clusters made of nearest-neighbour ‘down’ spins connected by bonds will 
now diverge at T,. These clusters then are good candidates for Ising droplets near the 
critical point. 

Now we apply the Migdal (Migdal 1976, Kadanoff 1976) renormalisation group to 
this Hamiltonian on the triangular lattice. After removing bonds and decimating (figure 
2), we find the recursion relations 

(6) 

where x = e  , y = e  and z =e-A’6. An important feature of equation (6) is that the 
expressions for y’ and z’ reduce to the Ising recursion relations with no dependence on x ; 
that is, the recursion relations are coupled only by the xr  dependence on y and z. This 

y2z6  + 2 
z 4 + 1  ’ 

2’ = (y424+ 1)(z4+ 1) 
y4Z4(2x2- 1 )+x4’  (y2r4+ 1)* ’ 

XI = (y424+ 1lX4 y ‘ =  

J K 
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Figure 2. Successive steps of the Migdal renormalisation group on the triangular lattice: (i) 
bond moving U + 6 ;  (ii) dedecoration 6 + c.  

decoupling occurs for other renormalisation groups (Coniglio and Eubensky 1980, 
Coniglio and Klein 1980, to be published), and in fact it seems to be a general property 
of Hamiltonian (1) in the limit s + 1. Because of this property, we can predict the exact 
Ising scaling powers yK = 1, Y H  = 1,875 and the Ising critical coupling K = 1.099, while 
equation (6 )  gives the approximate values y~ = 0.747, y H  = 1.879 and K = 1.219. We 
have also obtained recursion relations for h # 0, the details of which will be published 
elsewhere (Coniglio and Klein 1980, to be published). 

The fixed points and flow lines are shown in figure 3(a) ,  and the eigenvalue 
exponents are in table 1. Analysis of these fixed points shows that there exists a line of 

Figure 3. (a) Schematic representation of the flow lines generated by the recursion relations 
of equations (6). ( 6 )  Phase diagram for different values of the bond probability pB. The full 
curves are percolation critical lines for 'down' spins (occupied sites). The broken curves, 
which are a mirror image of the full curves, represent the critical lines of the 'up' spins 
(empty sites). 
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Table 1. The fixed point values and scaling powers associated with the phase transitions in 
our model. The fixed point J;" is reached from all values of J, K, H at which there is a 
percolation transition, except K = Kc, H = 0, whereas the fixed points JT and J f  are 
obtained only for K = Kc, N = 0. 

Fixed 
points J* YJ Yh 

JT Pure random 0.481 0.6115 1.904 
percolation (0,427)" (0.7375 f 0.08)b (1.898 i 0.003)b 

JT king 0.609 = K*/2 0.535 Yh = YH 
droplets 

clusters (1.955*0.005)' 
J f  Ising 2.324 <O 1,964 

1 < pB s 1 

Ising K * = K ,  YK YH 

K* 1.219 0.747 1.879 
(1*099)d (Ud (1 ~ 8 7 5 ) ~  

a Exact results (Sykes and Essam 1964). 

'Series expansion (Sykes and Gaunt 1976). This value Yh is obtained from the series 
expansion calculation yp = 1.91 iO.01 using the scaling relation yp = (2yh -2)/yK and the 
exact value YK = 1. 

Large cell renormalisation group (Reynolds er a1 1978). 

Exact results. 

percolation points where the Ising clusters diverge. Such lines end at the Ising critical 
point (figure 3 ( b ) ) ,  in agreement with rigorous results (Coniglio e ta l  1977). The critical 
exponents along this line are the same as those of random percolation, in agreement 
with other results (Klein e ta l  1978, Stoll and Domb 1978), but at the Ising critical point 
there is a change in the behaviour and we find that the connectedness length 6,- 
(K -Kc)-*Isin~, where vising = 1 and the mean cluster size S - (K - KC)-'p, with yp = 1.89. 
The crossover exponent is given by the Ising gap exponent, 8. 

This result gives a complete picture of two-dimensional Ising clusters at the Ising 
critical point. Although the linear dimension 6, diverges as the Ising correlation length 
(Klein et a1 1978), the mean cluster size S diverges faster than the susceptibility x, in 
very good agreement with the series result (Sykes and Gaunt 1976) yp= 1.91&0*01.  
The conclusion is that the Ising clusters satisfy the properties (i) and (ii) but do not 
satisfy (iii). The Ising clusters due to the geometrical effects are too compact to describe 
Ising critical droplets. 

we find another percolation line below the 
line pB = 1 (cf figure 3 ( b ) ) .  This line ends at the Ising critical point, which is a 
higher-order critical point for percolation. Along this line (except for the Ising critical 
point) we again find random percolation exponents. At the Ising critical point we find 
5, - (K -KJulsing and S - (K -Kc)-"**lng, where yIsing = 1.75. The 'bond dilution' has 
not shown any effect on the critical behaviour of the linear dimension of the clusters, but 
the size is now changed. The clusters are less compact now and behave like critical 
droplets; namely, they satisfy all the properties required, (i), (ii) and (iii). To complete 
our description, if we choose pB < p z ,  we find percolation lines (cf figure 3 ( b ) )  between 
the line pB = 1 and p g  with the same critical behaviour as for the case pB = 1. For 

15 

If we instead choose pB = p z  = 1 - 
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pB > p g  the percolation line ends at a temperature below the Ising critical temperature. 
The exponents along the line are the same as random percolation exponents (Reynolds 
et a1 1978). 

It is appropriate at this point to make a brief comment on the Migdal renor- 
malisation group we employ. We find in our calculations that some lattice-dependent 
properties agree with the known values for the triangular lattice (percolation threshold 
for the pure bond problem, Ising critical temperature), while others are more appro- 
priate to the square lattice (percolation threshold for the pure site problem). This is due 
to the fact that the Migdal renormalisation group generally does not distinguish 
different lattice types (Nicoll 1979). 

In conclusion, we have considered a Hamiltonian formalism for studying the 
site-bond correlated percolation problem. A general result, valid in all dimensions, has 
led us to the identification of the Ising critical point with the onset of an infinite cluster. 
Such a cluster is made of nearest-neighbour occupied sites, linked by random bonds 
with a probability pB given by equation ( 5 ) .  We have employed the Migdal renor- 
malisation group in two dimensions to show that these clusters in fact describe critical 
droplets near the Ising critical point. The fixed point which describes such droplets is 
related to a higher-order phase transition in the percolation problem which has not 
been studied previously. The study of this new point in higher dimensions is under way. 
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